Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract New Guinea is the largest tropical island in the world and hosts immense endemic biodiversity. However, our understanding of how the gradual emergence of the terrestrial ecosystems of the island over the last 40 Myr has generated this biological richness is hampered by poorly documented species diversity and distributions. Here, we address both these issues through an integrative taxonomy and biogeographical approach using Hylophorbus, a New Guinea-endemic genus of frogs with 12 recognized species. We delimited candidate species by integrating mitochondrial DNA, nuclear DNA, and bioacoustics, then investigated their evolutionary history. Our results suggest that the current taxonomy of the genus misses true species diversity by ≥3.5-fold. Nevertheless, most candidate species (27) remain unconfirmed because of missing data, whereas five were identified unambiguously as undescribed (we describe three of these formally). Time-calibrated phylogenetic analyses suggest that Hylophorbus diversification began ~9 Mya in the northern or eastern portion of New Guinea. It would appear that lineages dispersed to new terrestrial habitats in the west, notably uplifted by the central range orogeny, until eventually reaching the Bird’s Head during the Mio-Pliocene (7–5 Mya). Conversely, a past barrier appears to have prevented north–south dispersal. These data suggest that new habitat availability has primarily driven the diversification of Hylophorbus.more » « less
- 
            Abstract Divergence dating analyses in systematics provide a framework to develop and test biogeographic hypotheses regarding speciation. However, as molecular datasets grow from multilocus to genomic, sample sizes decrease due to computational burdens, and the testing of fine-scale biogeographic hypotheses becomes difficult. In this study, we use coalescent demographic models to investigate the diversification of poorly known rice paddy snakes from Southeast Asia (Homalopsidae:Hypsiscopus), which have conflicting dates of origin based on previous studies. We use coalescent modeling to test the hypothesis thatHypsiscopusdiversified 2.5 mya during the Khorat Plateau uplift in Thailand. Additionally, we use ecological niche analyses to identify potential differences in the niche space of the two most widely distributed species in the past and present. Our results suggestHypsiscopusdiversified ~ 2.4 mya, supporting that the Khorat Plateau may have initiated the diversification of rice paddy snakes. We also find significant niche differentiation and shifts between species ofHypsiscopus, indicating that environmental differences may have sustained differentiation of this genus after the Khorat Plateau uplift. Our study expands on the diversification history of snakes in Southeast Asia, and highlights how results from smaller multilocus datasets can be useful in developing and testing biogeographic hypotheses alongside genomic datasets.more » « less
- 
            Abstract The biota of Sulawesi is noted for its high degree of endemism and for its substantial levels of in situ biological diversification. While the island’s long period of isolation and dynamic tectonic history have been implicated as drivers of the regional diversification, this has rarely been tested in the context of an explicit geological framework. Here, we provide a tectonically informed biogeographical framework that we use to explore the diversification history of Sulawesi flying lizards (the Draco lineatus Group), a radiation that is endemic to Sulawesi and its surrounding islands. We employ a framework for inferring cryptic speciation that involves phylogeographic and genetic clustering analyses as a means of identifying potential species followed by population demographic assessment of divergence-timing and rates of bi-directional migration as means of confirming lineage independence (and thus species status). Using this approach, phylogenetic and population genetic analyses of mitochondrial sequence data obtained for 613 samples, a 50-SNP data set for 370 samples, and a 1249-locus exon-capture data set for 106 samples indicate that the current taxonomy substantially understates the true number of Sulawesi Draco species, that both cryptic and arrested speciations have taken place, and that ancient hybridization confounds phylogenetic analyses that do not explicitly account for reticulation. The Draco lineatus Group appears to comprise 15 species—9 on Sulawesi proper and 6 on peripheral islands. The common ancestor of this group colonized Sulawesi ~11 Ma when proto-Sulawesi was likely composed of two ancestral islands, and began to radiate ~6 Ma as new islands formed and were colonized via overwater dispersal. The enlargement and amalgamation of many of these proto-islands into modern Sulawesi, especially during the past 3 Ma, set in motion dynamic species interactions as once-isolated lineages came into secondary contact, some of which resulted in lineage merger, and others surviving to the present. [Genomics; Indonesia; introgression; mitochondria; phylogenetics; phylogeography; population genetics; reptiles.]more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
